Engineering Mechanics: Statics

Course Overview

Engineering Mechanics
- Statics (Freshman Fall)
- Dynamics (Freshman Spring)
- Strength of Materials (Sophomore Fall)
- Mechanism Kinematics and Dynamics (Sophomore Spring)
- Aircraft structures (Sophomore Spring and Junior Fall)
- Vibration (Senior)

Statics: \[\sum F = 0 \] force distribution on a system

Dynamics: \[x(t) = f(F(t)) \] displacement as a function of time and applied force

Strength of Materials: \[\delta = f(F) \] deflection of deformable bodies subject to static applied force

Vibration: \[x(t) = f(F(t)) \] displacement on particles and rigid bodies as a function of time and frequency
Chapter 1 General Principles

- Basic quantities and idealizations of mechanics
- Newton’s Laws of Motion and gravitation
- Principles for applying the SI system of units

Chapter Outline

- Mechanics
- Fundamental Concepts
- The International System of Units
- Numerical Calculations
- General Procedure for Analysis
1.1 Mechanics

- Mechanics can be divided into:
 - Rigid-body Mechanics
 - Deformable-body Mechanics
 - Fluid Mechanics

- Rigid-body Mechanics deals with
 - Statics – Equilibrium of bodies; at rest or moving with constant velocity
 - Dynamics – Accelerated motion of bodies
1.2 Fundamentals Concepts

Basic Quantities
- Length - locate the position of a point in space
- Mass - measure of a quantity of matter
- Time - succession of events
- Force - a “push” or “pull” exerted by one body on another

Idealizations
- Particle - has a mass and size can be neglected
- Rigid Body - a combination of a large number of particles
- Concentrated Force - the effect of a loading
1.2 Newton’s Laws of Motion

- **First Law** - A particle originally at rest, or moving in a straight line with constant velocity, will remain in this state provided that the particle is not subjected to an unbalanced force.

- **Second Law** - A particle acted upon by an *unbalanced force* F experiences an acceleration a that has the same direction as the force and a magnitude that is directly proportional to the force.

- **Third Law** - The mutual forces of action and reaction between two particles are equal and, opposite and collinear.
Chapter 2 Force Vector

Chapter Outline

• Scalars and Vectors
• Vector Operations
• Addition of a System of Coplanar Forces
• Cartesian Vectors
• Position Vectors
• Force Vector Directed along a Line
• Dot Product
2.1 Scalar and Vector

- Scalar: A quantity characterized by a positive or negative number, indicated by letters in italic such as \(A \), e.g. Mass, volume and length

- Vector: A quantity that has magnitude and direction, e.g. position, force and moment, presented as \(A \) and its magnitude (positive quantity) as \(|A| \)

- Vector Subtraction \(R' = A - B = A + (-B) \)

Finding a Resultant Force

- *Parallelogram law* is carried out to find the resultant force \(F_R = (F_1 + F_2) \)
2.4 Addition of a System of Coplanar Forces

Scalar Notation: Components of forces expressed as algebraic scalars

\[F_x = |F| \cos \theta \quad \text{and} \quad F_y = |F| \sin \theta \]

Cartesian Vector Notation in unit vectors \(\mathbf{i} \) and \(\mathbf{j} \)

\[\mathbf{F} = F_x \mathbf{i} + F_y \mathbf{j} \]

- Coplanar Force Resultants

\[\mathbf{F}_1 = F_{1x} \mathbf{i} + F_{1y} \mathbf{j} \]
\[\mathbf{F}_2 = -F_{2x} \mathbf{i} + F_{2y} \mathbf{j} \]
\[\mathbf{F}_3 = F_{3x} \mathbf{i} - F_{3y} \mathbf{j} \]
\[\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 = (F_{Rx}) \mathbf{i} + (F_{Ry}) \mathbf{j} \]

Scalar notation

\[F_{Rx} = F_{1x} - F_{2x} + F_{3x} \]
\[F_{Ry} = F_{1y} + F_{2y} - F_{3y} \]
Example 2.6

The link is subjected to two forces \mathbf{F}_1 and \mathbf{F}_2. Determine the magnitude and orientation of the resultant force.

Cartesian Vector Notation

$\mathbf{F}_1 = \{ 600\cos 30^\circ \ i + 600\sin 30^\circ \ j \} \ N$

$\mathbf{F}_2 = \{ -400\sin 45^\circ \ i + 400\cos 45^\circ \ j \} \ N$

Thus,

$\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2$

$\quad = (600\cos 30^\circ - 400\sin 45^\circ)\mathbf{i}$

$\quad \quad + (600\sin 30^\circ + 400\cos 45^\circ)\mathbf{j}$

$\quad = \{236.8\mathbf{i} + 582.8\mathbf{j}\} N$
2.5 Cartesian Vectors

- **Right-Handed Coordinate System**
 A right-handed rectangular or Cartesian coordinate system.

- **Rectangular Components of a Vector**
 - A vector \mathbf{A} may have one, two or three rectangular components along the x, y and z axes, depending on orientation.
 - By two successive applications

 $\mathbf{A} = \mathbf{A}' + \mathbf{A}_z$

 $\mathbf{A}' = \mathbf{A}_x + \mathbf{A}_y$

 $\mathbf{A} = \mathbf{A}_x + \mathbf{A}_y + \mathbf{A}_z$

 $\mathbf{A} = |\mathbf{A}|\mathbf{u}_A$
2.5 Direction Cosines of a Cartesian Vector

- Orientation of \mathbf{A} is defined as the coordinate direction angles α, β and γ measured between \mathbf{A} and the x, y and z axes, $0^\circ \leq \alpha, \beta$ and $\gamma \leq 180^\circ$.
- The direction cosines of \mathbf{A} is

$$\cos \alpha = \frac{A_x}{|\mathbf{A}|}, \quad \cos \beta = \frac{A_y}{|\mathbf{A}|}, \quad \cos \gamma = \frac{A_z}{|\mathbf{A}|}$$

$$\mathbf{u}_A = \frac{\mathbf{A}}{|\mathbf{A}|} = \left(\frac{A_x}{|\mathbf{A}|}\right)\mathbf{i} + \left(\frac{A_y}{|\mathbf{A}|}\right)\mathbf{j} + \left(\frac{A_z}{|\mathbf{A}|}\right)\mathbf{k}$$

$$\mathbf{u}_A = \cos \alpha \mathbf{i} + \cos \beta \mathbf{j} + \cos \gamma \mathbf{k}$$

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

$$\mathbf{A} = |\mathbf{A}| \mathbf{u}_A$$

$$= |\mathbf{A}| \cos \alpha \mathbf{i} + |\mathbf{A}| \cos \beta \mathbf{j} + |\mathbf{A}| \cos \gamma \mathbf{k}$$

$$= A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}$$
Example 2.8

Express the force F as Cartesian vector.

Since two angles are specified, the third angle is found by

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

$$\cos^2 \alpha + \cos^2 60^\circ + \cos^2 45^\circ = 1$$

$$\cos \alpha = \pm 0.5$$

$$\alpha = \cos^{-1}(0.5) = 60^\circ \quad \text{or} \quad \alpha = \cos^{-1}(-0.5) = 120^\circ$$

By inspection, $\alpha = 60^\circ$ since F_x is in the $+x$ direction

Given $F = 200\text{N}$

$$F = F \cos \alpha \mathbf{i} + F \cos \beta \mathbf{j} + F \cos \gamma \mathbf{k}$$

$$= (200 \cos 60^\circ)\mathbf{i} + (200 \cos 60^\circ)\mathbf{j} + (200 \cos 45^\circ)\mathbf{k}$$

$$= \{100.0\mathbf{i} + 100.0\mathbf{j} + 141.4\mathbf{k}\} \text{ N}$$

Checking:

$$F = \sqrt{F_x^2 + F_y^2 + F_z^2} = \sqrt{(100.0)^2 + (100.0)^2 + (141.4)^2} = 200\text{N}$$
2.7 Position Vector: Displacement and Force

Position Displacement Vector

\[\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \]

\(\mathbf{F} \) can be formulated as a Cartesian vector

\[\mathbf{F} = |\mathbf{F}| \mathbf{u} = |\mathbf{F}| \left(\frac{\mathbf{r}}{|\mathbf{r}|} \right) \]
Example 2.13

The man pulls on the cord with a force of 350N. Represent this force acting on the support A as a Cartesian vector and determine its direction.

\[r = (3m - 0m)i + (-2m - 0m)j + (1.5m - 7.5m)k \]
\[= \{3i - 2j - 6k\}m \]
\[\|r\| = \sqrt{(3m)^2 + (-2m)^2 + (-6m)^2} = 7m \]

Unit vector, \(u = \frac{r}{\|r\|} = \frac{3}{7}i - \frac{2}{7}j - \frac{6}{7}k \)

Force \(F \) as a magnitude of 350N, direction specified by \(u \).

\(F = |F|u \)
\[= 350N\left(\frac{3}{7}i - \frac{2}{7}j - \frac{6}{7}k\right) \]
\[= \{150i - 100j - 300k\}N \]

\(\alpha = \cos^{-1}(3/7) = 64.6^\circ \)
\(\beta = \cos^{-1}(-2/7) = 107^\circ \)
\(\gamma = \cos^{-1}(-6/7) = 149^\circ \)
2.9 Dot Product

Laws of Operation

1. Commutative law
 \[A \cdot B = B \cdot A \text{ or } A^T B = B^T A \]

2. Multiplication by a scalar
 \[a(A \cdot B) = (aA) \cdot B = A \cdot (aB) = (A \cdot B)a \]

3. Distribution law
 \[A \cdot (B + D) = (A \cdot B) + (A \cdot D) \]

4. Cartesian Vector Formulation
 - Dot product of 2 vectors A and B
 \[A \cdot B = A_x B_x + A_y B_y + A_z B_z \]

5. Applications
 - The angle formed between two vectors
 \[\theta = \cos^{-1}\left(\frac{A \cdot B}{|A||B|}\right) \quad 0^0 \leq \theta \leq 180^0 \]
 - The components of a vector parallel and perpendicular to a line
 \[A_a = |A| \cos \theta = A \cdot u \equiv A^T u \]
Example 2.17

The frame is subjected to a horizontal force $F = \{300j\}$ N. Determine the components of this force parallel and perpendicular to the member AB.

Since
\[
\bar{u}_B = \overrightarrow{\bar{r}_B} = \frac{2i + 6j + 3k}{\sqrt{(2)^2 + (6)^2 + (3)^2}} = 0.286i + 0.857j + 0.429k
\]

Thus
\[
|\bar{F}_{AB}| = |\bar{F}| \cos \theta
\]
\[
= \bar{F} \cdot \bar{u}_B = (300j) \cdot (0.286i + 0.857j + 0.429k)
\]
\[
= (0)(0.286) + (300)(0.857) + (0)(0.429)
\]
\[
= 257.1N
\]
Solution

Since result is a positive scalar, F_{AB} has the same sense of direction as u_B.

$$F_{AB} = |\vec{F}_{AB}|\vec{u}_{AB} = (257.1N)(0.286i + 0.857j + 0.429k)$$

$$= \{73.5i + 220j + 110k\}N$$

Perpendicular component

$$F_\perp = \vec{F} - \vec{F}_{AB} = 300j - (73.5i + 220j + 110k) = \{-73.5i + 80j - 110k\}N$$

Magnitude can be determined from F_\perp or from Pythagorean Theorem

$$|F_\perp| = \sqrt{|\vec{F}|^2 - |\vec{F}_{AB}|^2} = \sqrt{(300N)^2 - (257.1N)^2} = 155N$$
Chapter 3 Equilibrium of a Particle

Chapter Objectives

• Concept of the free-body diagram for a particle
• Solve particle equilibrium problems using the equations of equilibrium

Chapter Outline

• Condition for the Equilibrium of a Particle
• The Free-Body Diagram
• Coplanar Systems
• Three-Dimensional Force Systems
3.2 The Free-Body Diagram

- **Spring**
 - Linear elastic spring: with *spring constant or stiffness* k. $F = k s$

- **Cables and Pulley**
 - Cables (or cords) are assumed negligible weight and cannot stretch
 - Tension always acts in the direction of the cable
 - Tension force must have a constant magnitude for equilibrium
 - For any angle, the cable is subjected to a constant tension T

Procedure for Drawing a FBD

1. Draw outlined shape
2. Show all the forces
3. Identify each of the forces
Example 3.1

The sphere has a mass of 6kg and is supported. Draw a free-body diagram of the sphere, the cord CE and the knot at C.

FBD at Sphere

Cord CE

FBD at Knot

F_{CE} (Force of cord CE acting on sphere)

58.9 N (Weight or gravity acting on sphere)

F_{CBA} (Force of cord CBA acting on knot)

F_{CD} (Force of spring acting on knot)

F_{CE} (Force of cord CE acting on knot)
EXAMPLE 3.2

Determine the tension in cables BA and BC necessary to support the 60-kg cylinder in Fig. 3-6a.

SOLUTION

Equations of Equilibrium.

\[\sum F_x = 0; \quad T_C \cos 45^\circ - \left(\frac{4}{5}\right) T_A = 0 \quad (1) \]
\[+ \sum F_y = 0; \quad T_C \sin 45^\circ + \left(\frac{3}{5}\right) T_A - 60(9.81) \text{ N} = 0 \quad (2) \]

So that

\[T_C = 475.66 \text{ N} = 476 \text{ N} \quad T_A = 420 \text{ N} \quad \text{Ans.} \]
Example 3.7 Determine the force developed in each cable used to support the 40kN crate.

FBD at Point A

To expose all three unknown forces in the cables.

Equations of Equilibrium

Expressing each forces in Cartesian vectors,

\[
\mathbf{F}_B = F_B (\mathbf{r}_B / r_B) = -0.318 F_B \mathbf{i} - 0.424 F_B \mathbf{j} + 0.848 F_B \mathbf{k}
\]

\[
\mathbf{F}_C = F_C (\mathbf{r}_C / r_C) = -0.318 F_C \mathbf{i} - 0.424 F_C \mathbf{j} + 0.848 F_C \mathbf{k}
\]

\[
\mathbf{F}_D = F_D \mathbf{i} \quad \text{and} \quad \mathbf{W} = -40 \mathbf{k}
\]
Solution

For equilibrium,

\[\sum \mathbf{F} = 0; \quad \mathbf{F}_B + \mathbf{F}_C + \mathbf{F}_D + \mathbf{W} = 0 \]

\[-0.318 \mathbf{F}_B \mathbf{i} - 0.424 \mathbf{F}_B \mathbf{j} + 0.848 \mathbf{F}_B \mathbf{k} - 0.318 \mathbf{F}_C \mathbf{i} \]
\[-0.424 \mathbf{F}_C \mathbf{j} + 0.848 \mathbf{F}_C \mathbf{k} + \mathbf{F}_D \mathbf{i} - 40 \mathbf{k} = 0 \]

\[\sum F_x = 0; \quad -0.318 \mathbf{F}_B - 0.318 \mathbf{F}_C + \mathbf{F}_D = 0\]
\[\sum F_y = 0; \quad -0.424 \mathbf{F}_B - 0.424 \mathbf{F}_C = 0\]
\[\sum F_z = 0; \quad 0.848 \mathbf{F}_B + 0.848 \mathbf{F}_C - 40 = 0\]

\[\rightarrow \mathbf{F}_B = \mathbf{F}_C = 23.6 \text{kN}\]
\[\mathbf{F}_D = 15.0 \text{kN}\]
Chapter 4 Force System Resultants

Chapter Objectives

• Concept of moment of a force in two and three dimensions
• Method for finding the moment of a force about a specified axis.
• Define the moment of a couple.
• Determine the resultants of non-concurrent force systems
• Reduce a simple distributed loading to a resultant force having a specified location

Chapter Outline

• Moment of a Force – Scalar Formation
• Moment of Force – Vector Formulation
• Moment of a Force about a Specified Axis
• Moment of a Couple
• Simplification of a Force and Couple System
• Reduction of a Simple Distributed Loading
4.1 Moment of a Force – Scalar Formation

• **Moment** of a force about a point or axis – a measure of the tendency of the force to cause a body to rotate about the point or axis

• Torque – tendency of rotation caused by F_x or simple moment $(M_o)_z$

Magnitude

• For magnitude of M_o, $M_o = Fd \ (Nm)$
where $d =$ perpendicular distance from O to its line of action of force

Direction

• Direction using “right hand rule”

Resultant Moment

$M_{Ro} = \sum Fd$
4.2 Cross Product

- Cross product of two vectors \(\mathbf{A} \) and \(\mathbf{B} \) yields \(\mathbf{C} \), which is written as \(\mathbf{C} = \mathbf{A} \times \mathbf{B} = (\mathbf{A} \mathbf{B} \sin \theta)\mathbf{u}_C \)

Laws of Operations

1. Commutative law is not valid
 \[
 \mathbf{A} \times \mathbf{B} \neq \mathbf{B} \times \mathbf{A} \\
 \mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}
 \]

2. Multiplication by a Scalar
 \[
 a(\mathbf{A} \times \mathbf{B}) = (a\mathbf{A}) \times \mathbf{B} = \mathbf{A} \times (a\mathbf{B}) = (\mathbf{A} \times \mathbf{B})a
 \]

3. Distributive Law
 \[
 \mathbf{A} \times (\mathbf{B} + \mathbf{D}) = (\mathbf{A} \times \mathbf{B}) + (\mathbf{A} \times \mathbf{D})
 \]
 Proper order of the cross product must be maintained since they are not commutative.
4.2 Cross Product

Cartesian Vector Formulation

- Use \(C = \mathbf{A}\mathbf{B} \sin\theta \) on a pair of Cartesian unit vectors
- A more compact determinant in the form as

\[
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_x & A_y & A_z \\
B_x & B_y & B_z
\end{vmatrix}
\]

- Moment of force \(\mathbf{F} \) about point \(O \) can be expressed using cross product

\[
\mathbf{M}_O = \mathbf{r} \times \mathbf{F}
\]

- For magnitude of cross product,

\[
\mathbf{M}_O = rF \sin\theta
\]

- Treat \(\mathbf{r} \) as a sliding vector. Since \(d = r \sin\theta \),

\[
\mathbf{M}_O = rF \sin\theta = F (r\sin\theta) = Fd
\]
4.3 Moment of Force - Vector Formulation

For force expressed in Cartesian form,

\[
M_O = r \times F = \begin{bmatrix} i & j & k \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{bmatrix}
\]

with the determinant expended,

\[
M_0 = (r_y F_z - r_z F_y)i - (r_x F_z - r_z F_x)j + (r_x F_y - r_y F_x)k
\]

\[
= \begin{bmatrix} 0 & -r_z & r_y \\ r_z & 0 & -r_x \\ -r_y & r_x & 0 \end{bmatrix} \begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix}
\]
Determine the moment produced by the force \mathbf{F} in Fig. 4–14a about point O. Express the result as a Cartesian vector.

SOLUTION

$r_A = \{12k\} \text{ m}$ and $r_B = \{4i + 12j\} \text{ m}$

$$
\mathbf{F} = F \mathbf{u}_{AB} = 2 \text{kN} \left[\frac{\{4i + 12j - 12k\} \text{ m}}{\sqrt{(4 \text{ m})^2 + (12 \text{ m})^2 + (-12 \text{ m})^2}} \right]
$$

$$
= \begin{vmatrix}
4 & 12 & -12
\end{vmatrix}
\begin{bmatrix}
\frac{r_{AB}}{||r_{AB}||}
\end{bmatrix}
= \{0.4588i + 1.376j - 1.376k\} \text{ kN}
$$

Thus

$$
\mathbf{M}_O = r_A \times \mathbf{F} = \begin{vmatrix}
i & j & k \\
0 & 0 & 12 \\
0.4588 & 1.376 & -1.376
\end{vmatrix}
$$

$$
= \mathbf{M}_O = r_B \times \mathbf{F} = \begin{vmatrix}
i & j & k \\
4 & 12 & 0 \\
0.4588 & 1.376 & -1.376
\end{vmatrix}
$$

or $$
= \frac{r_{AB}}{||r_{AB}||} \begin{bmatrix}
0 & 12 & 0
\end{bmatrix} \begin{bmatrix}
4
\end{bmatrix}
= \begin{bmatrix}
0 & 12 & 0 \\
-12 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
12
\end{bmatrix}
= \{-16.5i + 5.51j\} \text{ kN\cdot m}
$$

Ans.
Example 4.4

Two forces act on the rod. Determine the resultant moment they create about the flange at \(O \). Express the result as a Cartesian vector.

\[
\mathbf{r}_A = \{5j\} \text{ m}
\]

\[
\mathbf{r}_B = \{4i + 5j - 2k\} \text{ m}
\]

The resultant moment about \(O \) is

\[
\mathbf{M}_O = \sum (\mathbf{r} \times \mathbf{F}) = \mathbf{r}_A \times \mathbf{F} + \mathbf{r}_B \times \mathbf{F}
\]

\[
= \begin{bmatrix} i & j & k \\ 0 & 5 & 0 \\ -60 & 40 & 20 \end{bmatrix} \begin{bmatrix} i & j & k \\ 4 & 5 & -2 \\ 80 & 40 & -30 \end{bmatrix}
\]

\[
= \begin{bmatrix} 0 & 0 & -5 \\ 0 & 0 & 0 \\ 5 & 0 & 0 \end{bmatrix} \begin{bmatrix} -60 \\ 40 \\ 20 \end{bmatrix} + \begin{bmatrix} 0 & -2 & -5 \\ 2 & 0 & 4 \\ 5 & -4 & 0 \end{bmatrix} \begin{bmatrix} 80 \\ 40 \\ -30 \end{bmatrix}
\]

\[
= \{30i - 40j + 60k\} \text{ kN} \cdot \text{m}
\]
4.4 Principles of Moments

- Since $F = F_1 + F_2$,

$$M_O = r \times F = r \times (F_1 + F_2) = r \times F_1 + r \times F_2$$

4.5 Moment of a Force about a Specified Axis Vector Analysis

- For magnitude of M_A,

$$M_A = M_O \cos \theta = M_O \cdot u_a$$

where $u_a = \text{unit vector}$

- In determinant form,

$$\left| M_a \right| = u_{ax} \cdot (r \times F) = \begin{vmatrix} u_{ax} & u_{ay} & u_{az} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}$$
Example 4.8 Determine the moment produced by the force F which tends to rotate the rod about the AB axis.

\[r_c = \begin{bmatrix} 0.6 \\ 0 \\ 0.3 \end{bmatrix}, \quad F = \begin{bmatrix} 0 \\ 0 \\ -300 \end{bmatrix} \]

\[M = r \times F = \begin{bmatrix} 0 & -0.3 & 0 \\ 0.3 & 0 & -0.6 \\ 0 & 0.6 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -300 \end{bmatrix} = \begin{bmatrix} 0 \\ 180 \\ 0 \end{bmatrix} \]

\[r_B = \begin{bmatrix} 0.4 \\ 0.2 \\ 0 \end{bmatrix}, \quad u_B = \begin{bmatrix} 0.4 \\ 0.2 \\ 0 \end{bmatrix} \frac{1}{\sqrt{0.2}} \]

\[M_{AB} = u_B^T M = \begin{bmatrix} 0.4 & 0.2 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 180 \\ 0 \end{bmatrix} \frac{1}{\sqrt{0.2}} = 80.4 \]
Determine the magnitude of the moment of force \(\mathbf{F} \) about segment \(OA \) of the pipe assembly in Fig. 4–24a.

\[
\mathbf{r}_{CD} = \begin{bmatrix} 0.4 & -0.4 & 0.2 \end{bmatrix}^T
\]

\[
\mathbf{F} = \frac{300 \mathbf{r}_{CD}}{\| \mathbf{r}_{CD} \|}
\]

\[
\mathbf{r}_{OC} = [0.1, 0.4, 0.3]
\]

\[
\mathbf{M} = \mathbf{r}_{OC} \times \mathbf{F} = \begin{bmatrix} 0 & -0.3 & 0.4 \\ 0.3 & 0 & -0.1 \\ -0.4 & 0.1 & 0 \end{bmatrix} \begin{bmatrix} 200 \\ -200 \\ 100 \end{bmatrix} = \begin{bmatrix} 100 \\ 50 \\ -100 \end{bmatrix}
\]

\[
\mathbf{M}_{OA} = \mathbf{r}_{OA}^T \mathbf{M} \left(\frac{1}{\| \mathbf{r}_{OA} \|} \right) = \begin{bmatrix} 0.6 & 0.8 & 0 \end{bmatrix} \begin{bmatrix} 100 \\ 50 \\ -100 \end{bmatrix} = 100
\]
4.6 Moment of a Couple

- Couple - two parallel forces of the same magnitude but opposite direction separated by perpendicular distance d

Scalar Formulation

- Magnitude of couple moment $M = Fd$
- M acts perpendicular to plane containing the forces

Vector Formulation

- For couple moment, $M = r \times F$

Equivalent Couples

- 2 couples are equivalent if they produce the same moment
- Forces of equal couples lie on the same plane or plane parallel to one another
Example 4.12

Determine the couple moment acting on the pipe. Segment AB is directed 30° below the x–y plane.

Take moment about point O,

$$\mathbf{M} = \mathbf{r}_A \times (-250\mathbf{k}) + \mathbf{r}_B \times (250\mathbf{k})$$

$$= (0.8\mathbf{j}) \times (-250\mathbf{k}) + (0.66\cos30^\circ\mathbf{i} + 0.8\mathbf{j} - 0.6\sin30^\circ\mathbf{k}) \times (250\mathbf{k})$$

$$= \{-130\mathbf{j}\} \text{N.cm}$$

Take moment about point A

$$\mathbf{M} = \mathbf{r}_{AB} \times (250\mathbf{k})$$

$$= (0.6\cos30^\circ\mathbf{i} - 0.6\sin30^\circ\mathbf{k}) \times (250\mathbf{k})$$

$$= \{-130\mathbf{j}\} \text{N.cm}$$

Take moment about point A or B,

$$\mathbf{M} = Fd = 250\text{N}(0.5196\text{m}) = 129.9\text{N.cm}$$

\mathbf{M} acts in the $-\mathbf{j}$ direction $\mathbf{M} = \{-130\mathbf{j}\} \text{N.cm}$
4.7 Simplification of a Force and Couple System

- Equivalent resultant force acting at point O and a resultant couple moment is expressed as

$$F_R = \sum F$$

$$\left(M_R \right)_O = \sum M_O + \sum M$$

- If force system lies in the x–y plane, then the couple moments are perpendicular to this plane,

$$\left(F_R \right)_x = \sum F_x$$

$$\left(F_R \right)_y = \sum F_y$$

$$\left(M_R \right)_O = \sum M_O + \sum M$$
4.8 Simplification of a Force and Couple System

Concurrent Force System

- A *concurrent force system* is where lines of action of all the forces intersect at a common point O

\[
R = \sum F
\]

Coplanar Force System

- Lines of action of all the forces lie in the same plane
- Resultant force of this system also lies in this plane
EXAMPLE 4.19

The slab in Fig. 4–46a is subjected to four parallel forces. Determine the magnitude and direction of a resultant force equivalent to the given force system and locate its point of application on the slab.

Fig. 4–46

SOLUTION (SCALAR ANALYSIS)

Force Summation. From Fig. 4–46a, the resultant force is

\[+ \mathbf{F}_R = \Sigma \mathbf{F}; \quad - \mathbf{F}_R = -600 \text{ N} + 100 \text{ N} - 400 \text{ N} - 500 \text{ N} \]

\[= -1400 \text{ N} = 1400 \text{ N} \downarrow \quad \text{Ans.} \]

Moment Summation.

\[(M_R)_x = \Sigma M_x; \]

\[-(1400 \text{ N}) y = 600 \text{ N}(0) + 100 \text{ N}(5 \text{ m}) - 400 \text{ N}(10 \text{ m}) + 500 \text{ N}(0) \]

\[y = 2.50 \text{ m} \quad \text{Ans.} \]

In a similar manner

\[(M_R)_y = \Sigma M_y; \]

\[(1400 \text{ N}) x = 600 \text{ N}(8 \text{ m}) - 100 \text{ N}(6 \text{ m}) + 400 \text{ N}(0) + 500 \text{ N}(0) \]

\[x = 3 \text{ m} \quad \text{Ans.} \]
4.9 Distributed Loading

- Large surface area of a body may be subjected to distributed loadings, often defined as pressure measured in Pascal (Pa): \(1 \text{ Pa} = 1 \text{N/m}^2\)

Magnitude of Resultant Force
- Magnitude of \(dF\) is determined from differential area \(dA\) under the loading curve.
- For length \(L\), \(F_R = \int w(x)dx = \int dA = A\)

Location of Resultant Force
- \(dF\) produces a moment of \(xdF = x \cdot w(x) \cdot dx\) about \(O\)
- \(\bar{x}F_R = \int xw(x)dx\)
- Solving for \(\bar{x}\)
 \[
 \bar{x} = \frac{\int xw(x)dx}{\int w(x)dx}
 \]
Example 4.21

Determine the magnitude and location of the equivalent resultant force acting on the shaft.

For the differential area element,
\[dA = wxdx = 60x^2dx \]

For resultant force
\[F_R = \int_0^2 dA = \int_0^2 60x^2dx \]
\[= 60 \left[\frac{x^3}{3} \right]_0^2 = 60 \left[\frac{2^3}{3} - 0 \right] = 160N \]

For location of line of action,
\[\bar{x} = \frac{\int_0^2 x(60x^2)dx}{\int_0^2 dA} = \frac{60 \left[\frac{x^4}{4} \right]_0^2}{160} = \frac{60 \left[\frac{2^4}{4} - \frac{0^4}{4} \right]}{160} = 1.5m \]
Chapter 5 Equilibrium of a Rigid Body

Objectives

• Equations of equilibrium for a rigid body
• Concept of the free-body diagram for a rigid body

Outline

• Conditions for Rigid Body Equilibrium
• Free-Body Diagrams
• Two and Three-Force Members
• Equations of Equilibrium
• Constraints and Statical Determinacy
5.1 Conditions for Rigid-Body Equilibrium

- The equilibrium of a body is expressed as

\[F_R = \sum F = 0 \]

\[(M_R)_O = \sum M_O = 0 \]

- Consider summing moments about some other point, such as point A, we require

\[\sum M_A = r \times F_R + (M_R)_O = 0 \]
5.2 Free Body Diagrams

- If a support prevents the translation of a body in a given direction, then a force is developed on the body in that direction.
- If rotation is prevented, a couple moment is exerted on the body.
5.2 Free Body Diagrams

<table>
<thead>
<tr>
<th>Types of Connection</th>
<th>Reaction</th>
<th>Number of Unknowns</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Cable</td>
<td></td>
<td>One unknown. The reaction is a tension force which acts away from the member in the direction of the cable</td>
</tr>
<tr>
<td>(2) Weightless Link</td>
<td></td>
<td>One unknown. The reaction is a force which acts along the axis of the link.</td>
</tr>
<tr>
<td>(3) Roller</td>
<td></td>
<td>One unknown. The reaction is a force which acts perpendicular to the surface at the point of contact.</td>
</tr>
<tr>
<td>(4) Roller or Pin in Confined Smooth Slot</td>
<td></td>
<td>One unknown. The reaction is a force which acts perpendicular to the slot.</td>
</tr>
<tr>
<td>(5) Rocker</td>
<td></td>
<td>One unknown. The reaction is a force which acts perpendicular to the surface at the point of contact.</td>
</tr>
</tbody>
</table>
5.2 Free Body Diagrams

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>smooth contacting surface</td>
<td>One unknown. The reaction is a force which acts perpendicular to the surface at the point of contact.</td>
</tr>
<tr>
<td></td>
<td>member pin connected</td>
<td>One unknown. The reaction is a force which acts perpendicular to the rod.</td>
</tr>
<tr>
<td></td>
<td>smooth pin or hinge</td>
<td>Two unknowns. The reactions are two components of force, or the magnitude and direction ϕ of the resultant force. Note that ϕ and θ are not necessarily equal [usually not, unless the rod shown is a link as in (2)].</td>
</tr>
<tr>
<td></td>
<td>Member fixed connected to collar on smooth rod</td>
<td>Two unknowns. The reaction are the couple moment and the force which acts perpendicular to the rod.</td>
</tr>
<tr>
<td></td>
<td>fixed support</td>
<td>Three unknowns. The reaction are the couple moment and the two force components, or the couple moment and the magnitude and direction ϕ of the resultant force.</td>
</tr>
</tbody>
</table>
5.2 Free Body Diagram

Weight and Center of Gravity

- Each particle has a specified weight
- System can be represented by a single resultant force, known as weight W of the body
- Location of the force application is known as the center of gravity
Example 5.1 Draw the free-body diagram of the uniform beam. The beam has a mass of 100kg.

Free-Body Diagram
• Support at A is a fixed wall
• Two forces acting on the beam at A denoted as A_x, A_y, with moment M_A
• For uniform beam,
 Weight, $W = 100(9.81) = 981N$
 acting through beam’s center of gravity
5.4 Two- and Three-Force Members

- When forces are applied at only two points on a member, the member is called a two-force member.
- Only force magnitude must be determined.

Three-Force Members
When subjected to three forces, the forces are concurrent or parallel.
5.5 3D Free-Body Diagrams

<table>
<thead>
<tr>
<th>Types of Connection</th>
<th>Reaction</th>
<th>Number of Unknowns</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) cable</td>
<td></td>
<td>One unknown. The reaction is a force which acts away from the member in the known direction of the cable.</td>
</tr>
<tr>
<td>(2) smooth surface support</td>
<td></td>
<td>One unknown. The reaction is a force which acts perpendicular to the surface at the point of contact.</td>
</tr>
<tr>
<td>(3) roller</td>
<td></td>
<td>One unknown. The reaction is a force which acts perpendicular to the surface at the point of contact.</td>
</tr>
<tr>
<td>(4) ball and socked</td>
<td></td>
<td>Three unknown. The reaction are three rectangular force components.</td>
</tr>
<tr>
<td>(5) single journal bearing</td>
<td></td>
<td>Four unknown. The reaction are two force and two couple moment components which acts perpendicular to the shaft. Note: The couple moments are generally not applied of the body is supported elsewhere. See the example.</td>
</tr>
</tbody>
</table>
5.7 Constraints for a Rigid Body

Redundant Constraints

- More support than needed for equilibrium
- Statically indeterminate: more unknown loadings than equations of equilibrium
5.7 Constraints for a Rigid Body

Improper Constraints

- Instability caused by the improper constraining by the supports
- When all reactive forces are concurrent at this point, the body is improperly constrained